ENGR 0020 PROB & STAT FOR ENGINEERS I Recitation 10

Teaching Assistant: Shaoning Han

Email: shaoning.han@pitt.edu

Office Hour: Thursday 2:00 – 3:00pm, 1023 Benedum Hall

Goals:

- 1. To help to understand the lecture and homework questions.
- 2. To take quizzes for getting the feedback of the class. The quizzes will take 10 mins at the end of recitation.
- 1. (Linear Regression Line; Exercise 11.6, p399) In a certain type of metal test specimen, the normal stress on a specimen is known to be functionally related to the shear resistance. The following is a set of coded experimental data on the two variables: Normal Stress, x Shear Resistance, y

ormar berebb, A	Shear resistante
26.8	26.6
25.4	27.3
28.9	24.2
23.6	27.1
27.7	23.6
23.9	25.9
24.7	26.3
28.1	22.5
26.9	21.7
27.4	21.4
22.6	25.8
25.6	24.9

- (a) Estimate the regression line $\mu_{Y|x} = \beta_0 + \beta_1 x$.
- (b) Estimate the shear resistance for a normal stress of 24.5.
- 2. (Confidence interval for parameters; Exercise 11.18, p412) With reference to the first exercise,
 - (a) evaluate s^2 ;
 - (b) construct a 99% confidence interval for β_0 ;
 - (c) construct a 99% confidence interval for β_1 ;

- 3. (Confidence interval v.s. Prediction interval; Exercise 11.23, p412) With reference to the last two exercises to compute
 - (a) a 95% confidence interval for the mean shear resistance when x = 24.5.
 - (b) a 95% prediction interval for a single predicted value of the shear resistance when x = 24.5.

4. (Data Transformation) Assume we have a set of data:

Independent variable, x	Dependent variable, y
1	11.25
2	63.47
3	252.15
4	4535.22
5	51670.95

Build a proper regression model to express the relationship between x and y.

