ENGR 0020	Name (Print):	
Spring 2019	Recitation Section:	(A 9:00-10:50, B 13:00-14:50)
Quiz 9		
March 28, 2019		
Time Limit: 10 Minutes	Teaching Assistant:	Shaoning Han

This quiz contains 1 page and 1 problem. You can use textbooks, notes and calculators, but *no* discussions. Use the backside of the paper if needed.

1. (10 points) A random sample of size $n_1 = 25$, taken from a normal population with a standard deviation $\sigma_1 = 5.2$, has a mean $\bar{x}_1 = 81$. A second random sample of size $n_2 = 36$, taken from a different normal population with a standard deviation $\sigma_2 = 3.4$, has a mean $\bar{x}_2 = 76$. Test the hypothesis that $\mu_1 = \mu_2$ against the alternative, $\mu_1 \neq \mu_2$. Quote a *P*-value in your conclusion.

Solution: The hypotheses are

$$H_0: \mu_1 = \mu_2$$
$$H_1: \mu_1 \neq \mu_2$$

Since the variance are known, we obtain

$$z = \frac{81 - 76}{5.2^2/25 + 3.4^2/36} = 4.22.$$

It implies *P*-value ≈ 0 . So, we reject H_0 and conclude that $\mu_1 > \mu_2$.